Graphing Logarithmic Functions in the forms:

$$f(x) = alog_cb(x-h) + k or f(x) = log_c \pm (x-h) + k$$

Simplified form

Vertical Asymptote: x = h

Variation:

Increasing

- c >1, a and b have the same sign or b is positive in simplified form
- 0 < c < 1, a and b have opposite signs or b is negative in simplified form

Decreasing

- 0 < c < 1, a and b have the same sign or b is positive in simplified form
- c >1, a and b have opposite signs or b is negative in simplified form

Orientation of the curve:

- If b is positive, the curve is to the right of the asymptote.
- If b is negative, the curve is to the left of the asymptote.

Examples: Graph the following

1.
$$f(x) = \log_4(x - 4) - 1$$

• Asymptote: x = 4

• Increasing, since c >1, b is positive

b is positive, so curve is to the right of the asymptote

Now find two points.

1) Zero:
$$\log_{4}(x^{-4}) - 1 = 0$$

 $\log_{4}(x^{-4}) = 1^{2}$
 $x - 4 = 4$
 $x - 4 = 4$
 $x = 8$
 $P(8,0)$

2) y-intercept (does not exist since curve is to the right of the asymptote)

So...make x = 20.

Domain: ¬¬¬, ∞[

Range: N

8 12 16 20 X Positive: [8,1 00 [

Negative: 34,8

2. $f(x) = -2\log_4 5(x+3) + 1$

• Asymptote: x = -3

 Decreasing since c > 1, and a and b have opposite signs.

• b is positive, so to the right of the asymptote.

Now we need two points.

Zero:
$$-2 \log_{4} 5(x+3) + 1 = 0$$
 $-2 \log_{4} 5(x+3) = -1$
 $\log_{4} (5(x+3)) = \frac{1}{2}$
 $5(x+3) = 4^{\frac{1}{2}}$
 $5(x+3) = 2$
 $x+3 = \frac{2}{5}$
 $x=-2.6$
 $(-2.6,0)$

y-intercept:

$$\begin{vmatrix}
-2 & 09 & 5(0+3) + 1 \\
-2 & 09 & 15 + 1 \\
-2 & 09 & 15 + 1
\end{vmatrix}$$

$$= -2 & 09 & 15 + 1$$

$$= -2 & 09 & 15 + 1$$

$$= -2 & 09 & 1$$

$$= -2 & 09 & 1$$

Domain:]-3, ⋈[

Positive:]-3,-2.6]

Negative: [-2. ८, ∞[