Series of lines - Examples

Example 1:

L1: passes through points (-2, -9) and (7, 0).

L2: is perpendicular to $y = -\frac{1}{3}x - 7$ and passes through (-1, -10).

L3: has a slope a=9, and a y-intercept of -7.

Find the equation of L4.

$$0 = \frac{\text{Line 1}}{x_2 - x_1} = \frac{0 - 9}{7 - 2} = \frac{9}{9} = 1$$

Line 2

$$0a: -\frac{1}{3} \rightarrow \frac{3}{1} = 3$$

 $2y = 3x + b$
 $4x - 10 = -3 + b$
 $4 = -3x - 7$

Line 3
(Da = 9
(Db? (0,-7)
b = -7

$$y = 9x - 7$$

 $14: y = 27x - 7$

$$y = 9(0) + b$$

-7 = b

Example 2:

L1: has slope a=2 and passes through (7, 13).

L2: has an x-intercept of 1/2 and a y-intercept of -2.

L3: is parallel to y=6x+3 and passes through (3, 15).

Find the equation of L5.

$$\frac{(2) - 2}{(0.5,0)} = \frac{(0.5,0)}{(0.5,0)}$$

$$\alpha = \frac{-2-0}{0-0.5} = \frac{-2}{-0.5} = 4$$

$$\beta = -2$$

$$\gamma = 4 \times -2$$

3
$$L_3$$
:
 $Q = 6$
 $15 = 6(3) + 6$
 $8 = 15 = 18 + 6$
 $6 = -3$
 $9 = 6x - 3$

$$4)$$
 $\frac{1}{5}$ $\frac{5}{1}$ $\frac{1}{3}$ $\frac{1}{3}$

Example 3:

L1: passes through (0, 2) and the solution of:

$$\begin{cases} y = 4x-4 \\ y = 3x-1 \end{cases} \qquad \begin{cases} y = 4x-4 \\ y = 3(3)-1 = 8 \end{cases}$$
L2: has a y-intercept of 4 and is perpendicular to $y = \frac{1}{2}x-3$.

L3: has a slope a=-6, and passes through the midpoint of segment AB, where A(-2, 15) and B(4, -11).

Find the equation of L4.

1)
$$L_{1}$$
:
 $a = \frac{8-2}{3-0} = \frac{6}{3} = 2$
 $b = 2$
 $y = 2x + 2$

3) Midpoint:
$$(\frac{-2+4}{2}, \frac{15+-11}{2})$$
 $(\frac{2}{2}, \frac{4}{2})$ $(1, 2)$

2)
$$L_{2}$$
:
 $a:\frac{1}{2} \rightarrow -2$
 $b=4 (y-int.)$
 $y=-2x+4$

4)
$$2 = -6x + b$$
 $xb^{2} = -6(1) + b$
 $b = 8$
 $y = -6x + 8$