Composition of Functions

A composite function is the result of combining two (or more) functions.

Notation:

$$(g \circ f)(x) = g(f(x)) \longrightarrow$$
 This means you are putting $f(x)$ into $g(x)$

$$(f \circ g)(x) = f(g(x))$$
 This means you are putting $g(x)$ into $f(x)$

Example 1:

Given f(x) = 2x + 3 and $g(x) = x^2$ find:

a)
$$(g \circ f)(x) = 9(f(x))_2$$

= $(2x+3)$
= $4x^2 + 12x + 9$

b)
$$(f \circ g)(x) = f(g(x))$$

= $2x^2 + 3$

You can also evaluate a composition by substituting in a value of x.

Using the above functions, determine:

a)
$$(g \circ f)(4) = (g \circ f)(x) = 4x^{2} + 12x + 9$$

 $(g \circ f)(4) = 4(4)^{2} + 12(4) + 9$
 $= 12$

b)
$$(f \circ g)(4) = (f \circ \gamma)(x) = 2x^2 + 3$$

 $(f \circ \gamma)(4) = \lambda(4)^2 + 3$
 $= 35$

Example 2:

Given: $f(x) = \sqrt{x}$ and $g(x) = x^2$ find:

a)(gof)(x) =
$$(\sqrt{x})^2$$

= \times

b)
$$(f \circ g)(x) = \sqrt{\chi^2}$$

$$= \chi$$

Notice:

$$(f \circ f^{-1})(x) = x$$

$$(f^{-1} \circ f)(x) = x$$